急求初中数学黄金分割问题30道
设有1根长为1的线段AB,在靠近B端的地方取点C(ACCB),使AC:CB=AB:AC,则C点为AB的黄金分割点。
解:设一条线段长度为1,该线段上存在一条长度为x小线段,它比这条长度为1的比值与余下部分比它的比值相等,这样才是黄金分割。
/2,取其前三位数字的近似值是0.618。几何作法 已知线段AB,按照如下方法作图:(1)经过点B作BD⊥AB,使BD= AB/2。(2)连接AD,在DA上截取DE=DB。(3)在AB上截取AC=AE.则点C为线段AB的黄金分割点。
数学问题.黄金分割
1、是欧几里得在《几何原理》中提出的问题:“将一条线段分为两段,使全段与其中一段的乘积等于另一段的平方。”按上述要求分割线段被意大利著名画家达.芬奇称为“黄金分割”,又称为“中外比”。
2、“黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或618∶1,即长段为全段的0.618。
3、在分割时.在长度为全长的约0.618处进行分割.就叫作黄金分割.这个分割点就叫做黄金分割点(通常用φ表示) 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
4、设有1根长为1的线段AB,在靠近B端的地方取点C(ACCB),使AC:CB=AB:AC,则C点为AB的黄金分割点。
初中数学题,黄金分割的计算
1、设有1根长为1的线段AB,在靠近B端的地方取点C(ACCB),使AC:CB=AB:AC,则C点为AB的黄金分割点。
2、初三数学黄金分割公式如下;黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。
3、解:设一条线段长度为1,该线段上存在一条长度为x小线段,它比这条长度为1的比值与余下部分比它的比值相等,这样才是黄金分割。
4、公式:b2=a(a-b)=a2-ab;(√5-1)÷2。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618,由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。